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Abstract
Random-effects meta-analyses with only a few studies often face challenges in accurately estimating between-
study heterogeneity, leading to biased effect estimates and confidence intervals with poor coverage. This issue is
especially the case when dealing with rare diseases. To address this problem for normally distributed outcomes,
two new approaches have been proposed to provide confidence limits of the global mean: one based on fiducial
inference, and the other involving two modifications of the signed log-likelihood ratio test statistic in order to have
improved performance with small numbers of studies. The performance of the proposed methods was evaluated
numerically and compared with the Hartung–Knapp–Sidik–Jonkman approach and its modification to handle small
numbers of studies. The simulation results indicated that the proposed methods achieved coverage probabilities
closer to the nominal level and produced shorter confidence intervals compared to those based on existing methods.
Two real examples are used to illustrate the proposed methods.

Highlights
What is already known?

Random-effects meta-analyses with few studies often struggle to accurately estimate between-study
heterogeneity, resulting in biased effect estimates and poorly covered confidence intervals. For normally
distributed outcomes, the Hartung–Knapp–Sidik–Jonkman (HKSJ) method adjusts the CI for the global
mean. Rover et al. proposed a modified Knapp–Hartung (mKH) method to improve performance with a
small number of studies.

What is new?

We proposed two new approaches to construct confidence intervals for the global mean: one based on
fiducial inference and another using modified signed log-likelihood ratio test statistics for improved small-
sample performance. Simulations showed that the new methods yielded coverage probabilities closer to
nominal levels and shorter intervals than the existing methods.

Potential impact for RSM readers

Random-effects meta-analyses with a small number of studies are a common challenge, particularly in areas
such as rare disease research. The proposed approaches offer readers effective alternatives with improved
performance for meta-analyses with few studies, helping researchers make more informed decisions.

This article was awarded Open Data and Open Materials badges for transparent practices. See the Data availability statement
for details.
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1. Introduction

Conducting a meta-analysis often involves a random-effects model that can account for both within-
study and between-study variability by using a normal–normal hierarchical model.1 For outcomes that
follow a normal distribution, the data are represented as k estimates 𝑌𝑖 ∈ R with known within-trial
variances 𝑠2

𝑖 > 0:

𝑌𝑖 ∼ 𝑁
(
𝜃𝑖 , 𝑠2

𝑖

)
, for 𝑖 = 1, . . . , 𝑘, (1)

where the 𝜃𝑖s vary from trial to trial around a global mean 𝜇 according to the normal distribution

𝜃𝑖 ∼ 𝑁
(
𝜇, 𝜏2

)
, for 𝑖 = 1, . . . , 𝑘 . (2)

Here, 𝜏2 is a heterogeneity variance component, representing the variability between trials or studies.
The integrated and simplified model under consideration, as discussed in,1 is

𝑌𝑖 ∼ 𝑁
(
𝜇, 𝜏2 + 𝑠2

𝑖

)
, for 𝑖 = 1, . . . , 𝑘, (3)

where 𝜇 is the unknown parameter of interest. The within-trial variances 𝑠2
𝑖 , assumed to be known,

depend on the group sizes in each trial and on the within-trial variances of the outcome variables in the
ith trial. The latter are typically estimated, even though we proceed under the standard assumption that
these are known. In many applications, only a limited number of studies is available for a meta-analysis,
often fewer than five. Estimating the between-study heterogeneity 𝜏2 is particularly challenging in these
situations. Inaccurate heterogeneity estimates can result in biased effect estimates and overly narrow
confidence intervals.2 Deriving reliable estimates and confidence intervals from only a small number
of studies is challenging, especially in the context of rare diseases.

The problem of interest in our work is the computation of confidence limits for the underlying mean
𝜇 when the number of studies k is small. Mathes and Kuss2 demonstrated that for binary outcomes
and in the presence of random effects, the beta-binomial model was the most appropriate model for
meta-analysis involving a small number of studies, offering a balanced trade-off between coverage
probability and power. For normally distributed outcomes, there are several methods to construct
confidence intervals for 𝜇. However, there is no universally accepted satisfactory method, especially
for small k. In the present work, the focus is on the outcomes following a normal distribution.

A natural point estimate of 𝜇 can be obtained as a weighted average of the 𝑌𝑖s in (3), weighted by
the inverse of the variance in the model (3). The resulting point estimate, say �̂�𝜏 , and the associated
normal distribution, are given by

�̂�𝜏 =

∑𝑘
𝑖=1

(
𝜏2 + 𝑠2

𝑖

)−1
𝑌𝑖∑𝑘

𝑖=1
(
𝜏2 + 𝑠2

𝑖

)−1 ∼ 𝑁
��	𝜇, �̂�2

𝜇 =

{
𝑘∑
𝑖=1

(
𝜏2 + 𝑠2

𝑖

)−1
}−1�� . (4)

Using a normal approximation for �̂�𝜏 , an approximate (1 − 𝛼)% confidence interval for 𝜇 is given by

�̂�𝜏 ± �̂�𝜇𝑧 (1−𝛼/2) , (5)

where 𝑧 (1−𝛼/2) is the (1 − 𝛼/2)-quantile of the standard normal distribution. In practice, 𝜏2 is replaced
with a suitable estimate, and the normal approximation is satisfactory when the number of studies k is
large, with small within-trial variances or when heterogeneity is minimal.1

An adjusted CI introduced by Hartung and Knapp,3 and Sidik and Jonkman,4 usually referred to as
the Hartung–Knapp–Sidik–Jonkman (HKSJ) method is given by

�̂�𝜏 ±
√

𝑞�̂�𝜇𝑡 (𝑘−1);(1−𝛼/2) , (6)
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where 𝑞 = 1
𝑘−1

∑
𝑖
(𝑦𝑖−�̂�𝜏 )2

(𝜏2+𝑠2
𝑖 )

, and 𝑡 (𝑘−1);(1−𝛼/2) is the (1 − 𝛼/2)-quantile of the Student-t distribution

with (𝑘 − 1) degrees of freedom. For a small number of studies k, Rover et al.1 proposed the modified
Knapp–Hartung (mKH) method, replacing q by

𝑞∗ = max{1, 𝑞}. (7)

The CI of 𝜇 using the HKSJ method in (6) is generally wider than the CI based on the normal
approximation in (5) since the student-t quantile is larger than the corresponding normal quantile.
However, q can become arbitrarily small, and if 𝑞 <

𝑧(1−𝛼/2)
𝑡(𝑘−1) ;(1−𝛼/2)

, the HKSJ method’s adjusted interval
would be shorter than the normal approximation-based interval, which is counter-intuitive. The mKH
method provides a more conservative approach, with error rates that are more closely aligned with the
nominal level, particularly when dealing with a small number of studies with varying sizes or precision
levels.1

In this work, two novel approaches are proposed to construct confidence intervals for 𝜇, and their
performance is evaluated numerically through a simulation study, and compared with the existing
methods. The first approach is based on the idea of fiducial inference, and the second approach is based
on two modifications to the signed log-likelihood ratio test statistic to obtain accurate small sample
performance.5 For details on fiducial inference, we refer to the works of Hannig et al.6,7 Earlier, fiducial
quantities were investigated by Weerahandi,8 referring to it as generalized pivotal quantities.

The following sections first describe the proposed methods and algorithms for obtaining confidence
limits of 𝜇 in (3). Next, the performance of these methods is evaluated through the results of a
simulation study and two applied examples. The paper concludes with a discussion of the findings.

2. Methods

To obtain the confidence limits for 𝜇 in the model (3), especially when the number of studies k is small,
two methods are proposed. One method is based on the fiducial approach, while the other involves
modifications of the signed log-likelihood ratio test statistic. The fiducial approach is primarily based
on the work of Iyer et al.9 The second method, which focuses on small sample asymptotics, includes two
modifications to the signed log-likelihood ratio test to improve performance in small sample scenarios,
as detailed by DiCiccio et al.5

2.1. The fiducial approach

Consider the point estimate of 𝜇, denoted by �̂�𝜏 , given in equation (4). Let the corresponding residual
sum of squares be denoted by 𝑅

(
𝜏2) . Defining

𝒚 = (𝑌1, 𝑌2, . . . , 𝑌𝑘 )′ , and 𝑫 = diag
(
𝑠2

1, 𝑠2
2, . . . , 𝑠2

𝑘

)
+ 𝜏2𝐼𝑘 , (8)

the quantity 𝑅
(
𝜏2) can be expressed as

𝑅
(
𝜏2
)
= (𝒚 − �̂�𝜏1𝑘 )′ 𝑫−1 (𝒚 − �̂�𝜏1𝑘 )

= 𝒚′

[
𝑫−1 −

𝑫−11𝑘1′
𝑘𝑫

−1

1′
𝑘𝑫

−11𝑘

]
𝒚 ∼ 𝜒2

𝑘−1,
(9)

where 1𝑘 is a 𝑘 × 1 vector of ones, and 𝜒2
𝑟 denotes the central chi-square distribution with r degrees

of freedom. The quantities �̂�𝜏 and 𝑅
(
𝜏2) are independent, as shown by the standard results on linear

models under the normality assumption.
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To understand the behavior of 𝑅
(
𝜏2) as a function of 𝜏2, consider another representation of 𝑅

(
𝜏2) .

Let Z be a 𝑘 × (𝑘 − 1) matrix whose columns are orthonormal and orthogonal to the vector 1𝑘 (i.e.,
Z′Z = 𝐼𝑘−1 and Z′1𝑘 is a vector of zeros). Then, the following result holds:

𝑫−1 −
𝑫−11𝑘1′

𝑘𝑫
−1

1′
𝑘𝑫

−11𝑘

= Z (Z′𝑫Z)−1 Z′,

see Appendix M, Section M.4.f in the work by Searle et al.10 Thus, 𝑅
(
𝜏2) can be represented as

𝑅
(
𝜏2
)
= 𝒚′Z (Z′𝑫Z)−1 Z′𝒚, (10)

where 𝑫 is the diagonal matrix given in Equation (8). From this representation, it follows that 𝑅
(
𝜏2)

is a decreasing function of 𝜏2, reaching its maximum value when 𝜏2 = 0, and is also a convex function
of 𝜏2. These properties were also proved by Iyer et al.9 based on the representation (9). Let

𝑫0 = diag
(
𝑠2

1, 𝑠2
2, . . . , 𝑠2

𝑘

)
(11)

which is the value of 𝑫 in (8) when 𝜏2 = 0. Thus, 𝑅
(
𝜏2) ≤ 𝑅(0). Note that

𝑅(0) = (𝒚 − �̂�01𝑘 )′ 𝑫−1
0 (𝒚 − �̂�01𝑘 )

= 𝒚′

[
𝑫−1

0 −
𝑫−1

0 1𝑘1′
𝑘𝑫

−1
0

1′
𝑘𝑫

−1
0 1𝑘

]
𝒚

= 𝒚′Z (Z′𝑫0Z)−1 Z′𝒚,

(12)

where �̂�0 =
∑𝑘

𝑗=1

(
𝑠2
𝑗

)−1
𝑌𝑗∑𝑘

𝑗=1

(
𝑠2
𝑗

)−1 . We note that 𝑅(0) is the usual 𝑄− statistic to test if 𝜏2 = 0, and 𝑅(𝜏2) is the

generalized 𝑄−statistic.11

We shall now explain the derivation of a fiducial quantity for 𝜇, whose percentiles can be used to
compute confidence limits for 𝜇. Since the fiducial quantity for 𝜇 depends on the fiducial quantity
for 𝜏2, we shall first obtain a fiducial quantity for the latter. Let 𝒚𝑜 denote the observed value of 𝒚.
Furthermore, let

𝑅𝑜

(
𝜏2
)
= 𝒚′𝑜

[
𝑫−1 −

𝑫−11𝑘1′
𝑘𝑫

−1

1′
𝑘𝑫

−11𝑘

]
𝒚𝑜

and 𝑅𝑜 (0) = 𝒚′𝑜

[
𝑫−1

0 −
𝑫−1

0 1𝑘1′
𝑘𝑫

−1
0

1′
𝑘𝑫

−1
0 1𝑘

]
𝒚𝑜 .

(13)

Let 𝑈2 ∼ 𝜒2
𝑘−1. Following the work of Iyer et al.,9 a fiducial quantity for 𝜏2 is the solution to the

equation 𝑅𝑜
(
𝜏2) = 𝑈2, provided 𝑈2 is between 0 and 𝑅𝑜 (0). Thus 𝜏2, the fiducial quantity for 𝜏2, is

given by

𝜏2 =

{
Solution to 𝑅𝑜

(
𝜏2) = 𝑈2, if 0 < 𝑈2 < 𝑅𝑜 (0),

0, otherwise .
(14)

Here, we would like to note that Paule and Mandel12 suggested an estimator of 𝜏2 as the solution to
𝑅𝑜 (𝜏2) = 𝑘 − 1.
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To get a fiducial quantity for 𝜇, note that �̂�𝜏 in (4) can be written as

�̂�𝜏 =
(
1′
𝑘𝑫

−11𝑘

)−1
1′
𝑘𝑫

−1𝒚 ∼ 𝑁

(
𝜇,

(
1′
𝑘𝑫

−11𝑘

)−1
)

.

Thus, we can write

𝜇 = �̂�𝜏 −
(
1′
𝑘𝑫

−11𝑘

)− 1
2

𝑍, (15)

where 𝑍 =
(
1′
𝑘𝑫

−11𝑘
) 1

2 ( �̂�𝜏 − 𝜇) ∼ 𝑁 (0, 1). The expression on the right-hand side of the above
equation depends on the unknown parameter 𝜏2 and the observable random variable 𝒚 (in the expression
for �̂�𝜏). A fiducial quantity for 𝜇 is obtained from the above equation by replacing 𝜏2 with the fiducial
quantity 𝜏2 in (14) and by replacing 𝒚 with its observed value 𝒚𝑜. Thus, let

�̃� = diag
(
𝑠2

1, 𝑠2
2, . . . , 𝑠2

𝑘

)
+ 𝜏2𝐼𝑘 , and �̂� �̃� =

(
1′
𝑘 �̃�

−11𝑘

)−1
1′
𝑘 �̃�

−1
𝒚𝑜 . (16)

A fiducial quantity for 𝜇, denoted by �̃�, is then given by

�̃� = �̂� �̃� −
(
1′
𝑘 �̃�

−11𝑘

)− 1
2

𝑍. (17)

We note that �̃� is a function of two independent random variables: the chi-square random variable
𝑈2 with df = 𝑘 − 1 used in the computation of 𝜏2 in (14), and a standard normal random variable Z.
Once the observed data vector 𝒚𝑜 is available, a large number of values, say m, of the pair

(
𝑈2, 𝑍

)
can be generated. These m pairs of values, along with the observed data 𝒚𝑜, can be used to compute
m realizations of the fiducial quantities 𝜏2 and �̃�. The percentiles of the m realizations of �̃� provide
confidence limits for 𝜇.

In the above approach, point estimates of 𝜇 and 𝜏2 are not explicitly used. An algorithm for
implementing the fiducial approach to obtain confidence limits for 𝜇 is outlined below.

Algorithm 1 Fiducial Approach

Require: Observed data 𝒚𝑜, and known within-trial variances 𝑠2
𝑖 , 𝑖 = 1, · · · , 𝑘 .

Sample 𝑚 pairs of (𝑈2, 𝑍) from 𝑈2 ∼ 𝜒2
𝑘−1, and 𝑍 ∼ 𝑁 (0, 1).

for each pair of (𝑈2, 𝑍) do
if 0 < 𝑈2 < 𝑅𝑜 (0) then

Compute 𝜏2 by solving 𝑅𝑜

(
𝜏2
)
= 𝑈2.

else
Set 𝜏2= 0

end if

Compute �̃�= �̂� �̃� −
(
1′
𝑘
�̃�
−11𝑘

)− 1
2

𝑍 , with �̃� = diag
(
𝑠2

1, 𝑠2
2, · · · , 𝑠2

𝑘

)
+ 𝜏2𝐼𝑘 , and �̂� �̃� =(

1′
𝑘
�̃�
−11𝑘

)−1
1′
𝑘
�̃�
−1

𝒚𝑜.
end for
return 𝑚 realizations of the fiducial quantity �̃�, with their percentiles as confidence limits for 𝜇.

2.2. Small sample asymptotics

It is well known that under regularity conditions, the signed log-likelihood ratio test statistic is
asymptotically standard normal, providing first-order accuracy. Small-sample asymptotics involve
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modifying the signed log-likelihood ratio test statistic to achieve accurate performance in small
samples. In order to introduce the basic idea, consider an 𝑛 × 1 vector of observations 𝒚 whose
distribution depends on a 𝑑 × 1 parameter vector 𝜽 . Let ℓ(𝜽) = ℓ(𝜽; 𝒚) be the log-likelihood function.
Suppose that the parameter 𝜽 is partitioned as (𝜓, 𝝀′)′, where 𝜓 is a scalar parameter of interest, and
𝝀 is a nuisance parameter. Let �̂� =

(
�̂�, �̂�

′) ′ denote the MLE, �̂�𝜓 denote the constrained MLE of 𝝀 for

a fixed 𝜓, and write �̂�𝜓 =
(
𝜓, �̂�

′
𝜓

) ′
. Large sample inference for 𝜓 can be based on the signed log-

likelihood root

𝑟 (𝜓) = sign(�̂� − 𝜓)
[
2
{
ℓ(�̂�) − ℓ(�̂�𝜓)

}]1/2
, (18)

where sign(𝑥) is +1 if 𝑥 > 0 and -1 if 𝑥 < 0. Under regular conditions, 𝑟 (𝜓) is asymptotically standard
normal with an error of the order 𝑂

(
𝑛−1/2) . Several modifications of 𝑟 (𝜓) are available in the literature

to improve small sample performance.13 Here, we consider two modifications proposed by DiCiccio
et al.5

2.2.1. Modification I
To describe the first modification, let 𝐸 (𝑟 (𝜓)) = 𝑚(𝜓, 𝝀) and Var(𝑟 (𝜓)) = 1 + 𝑣(𝜓, 𝝀). Now define

𝑟1(𝜓) =
𝑟 (𝜓) − 𝑚

(
𝜓, �̂�𝜓

)
{
1 + 𝑣

(
𝜓, �̂�𝜓

)}1/2 . (19)

For a fixed value of 𝜓, 𝑟1 (𝜓) is thus a standardization of 𝑟 (𝜓) using the mean and variance evaluated
at 𝝀 = �̂�𝜓 . DiCiccio et al.5 have shown that under regular conditions, 𝑟1 (𝜓) has an asymptotic
standard normal distribution, and 𝑃 [𝑟1(𝜓) ≥ 𝑡] = [1 − Φ(𝑡)] + 𝑂

(
𝑛−3/2) . In other words, the tail

area approximation based on the asymptotic standard normal distribution of 𝑟1 (𝜓) is significantly more
accurate than that based on the asymptotic standard normal distribution of 𝑟 (𝜓).

In order to carry out inference based on the asymptotic standard normal distribution of 𝑟1 (𝜓),
it is necessary to compute the mean and variance of 𝑟 (𝜓); namely, the quantities 𝑚

(
𝜓, �̂�𝜓

)
and

1 + 𝑣
(
𝜓, �̂�𝜓

)
. For a specified value of 𝜓, these can be obtained numerically, as noted in the work of

DiCiccio et al.5 After specifying 𝜓, compute �̂�𝜓 , and generate a parametric bootstrap sample of size n
when 𝜓 takes the specified value and 𝝀 = �̂�𝜓 . Let 𝑟∗(𝜓) denote the value of 𝑟 (𝜓) calculated from the
parametric bootstrap sample. Generate several parametric bootstrap samples of size n, say B samples,
and compute B values of 𝑟 (𝜓), denoted by 𝑟∗𝑗 (𝜓) for 𝑗 = 1, 2, . . . , 𝐵. The mean and variance of 𝑟∗𝑗 (𝜓)

for 𝑗 = 1, 2, . . . , 𝐵, provide estimates of 𝑚
(
𝜓, �̂�𝜓

)
and 1 + 𝑣

(
𝜓, �̂�𝜓

)
, respectively, to be used in the

calculation of 𝑟1 (𝜓). To compute confidence limits for 𝜓 based on 𝑟1(𝜓), equate 𝑟1(𝜓) to standard
normal percentiles and solve for 𝜓. For example, a 95% upper confidence limit for 𝜓 can be obtained
as the solution for 𝜓 to equation 𝑟1(𝜓) = −1.96.

2.2.2. Modification II
A second modification suggested by DiCiccio et al.5 involves estimating the tail probability 𝑃(𝑟 (𝜓) ≤
𝑡) using Monte Carlo simulation at the parameter value 𝜽 = �̂�𝜓 , rather than relying on the standard
normal distribution for 𝑟 (𝜓). For example, to test the null hypothesis 𝜓 = 𝜓0 against the one-sided
alternative 𝜓 > 𝜓0, a p-value can be calculated as 𝑃 (𝑟 (𝜓0) ≤ 𝑟obs), evaluated at the parameter value
𝜽0 = �̂�𝜓0 , where 𝑟obs is the observed value of 𝑟 (𝜓0). The confidence limits for 𝜓 can then be obtained
by inverting the test.
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2.2.3. Algorithms
In the context of the random-effects meta-analysis model given in (3), the parameter of interest is
𝜓 = 𝜇, and the nuisance parameter is the scalar 𝜆 = 𝜏2. Thus, in terms of the notation used for the two
modifications given above, the parameter vector is 𝜽 =

(
𝜇, 𝜏2) ′. We use ℓ(𝜽) = ℓ

(
𝜇, 𝜏2) to denote the

log-likelihood function under the model (3).
The algorithms proposed to implement the two modifications to obtain the confidence limits of 𝜇

under the model (3) are presented below.

Algorithm 2 Small Sample Asymptotics with Modification I

Require: Observed data 𝒚𝑜, and known within-trial variances 𝑠2
𝑖 , 𝑖 = 1, · · · , 𝑘 .

1: Consider a grid of values of 𝜇0.
2: for each value 𝜇0 do
3: Compute the MLEs �̂� and 𝜏2 by maximizing the likelihood function ℓ

(
𝜇, 𝜏2

)
.

4: Let 𝜇 = 𝜇0, maximize the likelihood function ℓ
(
𝜇0, 𝜏2

)
with respect to 𝜏2, i.e., obtain 𝜏2

𝜇0 .

5: Compute 𝑟 (𝜇0)= sign ( �̂� − 𝜇0)
[
2
{
ℓ
(
�̂�, 𝜏2

)
− ℓ

(
𝜇0, 𝜏2

𝜇0

)}]1/2

6: for each 𝑗 = 1, 2, · · · , 𝐵 do
7: Generate parametric bootstrap sample from 𝑌∗

𝑖 𝑗 ∼ 𝑁
(
𝜇0, 𝜏2

𝜇0 + 𝑠2
𝑖

)
, 𝑖 = 1, . . . , 𝑘

8: Repeat steps 3-5 for 𝑌∗
𝑖 𝑗 , 𝑖 = 1, · · · , 𝑘 , and obtain 𝑟∗𝑗 (𝜇0).

9: end for
10: Compute the mean and variance of 𝑟∗𝑗 (𝜇0) , 𝑗 = 1, 2, · · · , 𝐵, denoted by 𝑚

(
𝜇0, 𝜏2

𝜇0

)
and 1 + 𝑣

(
𝜇0, 𝜏2

𝜇0

)
,

then compute 𝑟1 (𝜇0)=
𝑟 (𝜇0)−𝑚

(
𝜇0 , �̂�

2
𝜇0

)
1+𝑣

(
𝜇0 , �̂�

2
𝜇0

)1/2 .

11: end for
12: return Confidence limits for 𝜇 are the values of 𝜇0 for which 𝑟1 (𝜇0) is equal to the appropriate standard

normal quantiles.

Algorithm 3 Small Sample Asymptotics with Modification II

Require: Observed data 𝒚𝑜, and known within-trial variances 𝑠2
𝑖 , 𝑖 = 1, · · · , 𝑘 .

1: Consider a grid of values of 𝜇0.
2: for each value 𝜇0 do
3: Compute the MLEs �̂� and 𝜏2 by maximizing the likelihood function ℓ

(
𝜇, 𝜏2

)
.

4: Let 𝜇 = 𝜇0, maximize the likelihood function ℓ
(
𝜇0, 𝜏2

)
with respect to 𝜏2, i.e., obtain 𝜏2

𝜇0 .

5: Compute 𝑟 (𝜇0)= sign ( �̂� − 𝜇0)
[
2
{
ℓ
(
�̂�, 𝜏2

)
− ℓ

(
𝜇0, 𝜏2

𝜇0

)}]1/2

6: for each 𝑗 = 1, 2, · · · , 𝐵 do
7: Generate parametric bootstrap sample from 𝑌∗

𝑖 𝑗 ∼ 𝑁
(
𝜇0, 𝜏2

𝜇0 + 𝑠2
𝑖

)
, 𝑖 = 1, . . . , 𝑘

8: Repeat steps 3-5 for 𝑌∗
𝑖 𝑗 , 𝑖 = 1, · · · , 𝑘 , and obtain 𝑟∗𝑗 (𝜇0).

9: end for
10: Compute 𝑃

(
𝑟 (𝜇0)∗ ≤ 𝑟 (𝜇0)) and 𝑃

(
𝑟 (𝜇0)∗ ≥ 𝑟 (𝜇0)) as the corresponding frequencies in the bootstrap

samples.
11: end for
12: return Confidence limits for 𝜇 are the values of 𝜇0 for which the p-values are equal to the significance level.

For the numerical implementation of the proposed methods, a grid of values for 𝜇0 can be considered
for both algorithms. The grid of values 𝜇 can be selected to cover a range around the MLE of 𝜇, since the
upper confidence limit will be larger than the MLE of 𝜇, and the lower confidence limit will be smaller.
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For the algorithm for modification I, to calculate a two-sided confidence interval for 𝜇, the upper and
lower confidence limits are obtained by finding the values of 𝜇0 for which 𝑟1 (𝜇0) is close to the standard
normal quantiles according to a specified threshold. For the algorithm for modification II, the confidence
limits for 𝜇 are determined by finding the values of 𝜇0 that make the p values 𝑃

(
𝑟 (𝜇0)∗ ≤ 𝑟 (𝜇0)

)
and

𝑃
(
𝑟 (𝜇0)∗ ≥ 𝑟 (𝜇0)

)
close to the significance level, once again according to a specified threshold.

3. Results

3.1. Simulation settings

In order to evaluate the performance of the proposed methods, a simulation study similar to that of
Rover et al.1 was conducted for the modified HKSJ (mKH) method with a small number of studies (k).
The “relative amount of heterogeneity” is expressed in terms of the measure 𝐼2 defined as

𝐼2 =
𝜏2

𝜏2 + 𝑠2 , (20)

where 𝑠 is an “average” standard error among the study-specific 𝑠𝑖 values.1,14 In the simulation study,
𝑠2 was calculated as the arithmetic mean of the squared standard errors, i.e.,

𝑠2 =
1
𝑘

𝑘∑
𝑖=1

2𝜎2

𝑛𝑖
(21)

with 𝑛𝑖 being the group size of trial 𝑖 (𝑖 = 1, . . . , 𝑘) and 𝜎 is a scaling factor. Since the results depend
solely on the ratio 𝜏/𝜎, 𝜎 = 1 was set in the simulations.15 The simulation setup we have used and also
adopted in the work of Rover et al.,1 is taken from the study by IntHout et al.15

Similarly to the work by Rover et al.,1 four different meta-analyses scenarios were considered in the
simulation: (A) trials of equal size, (B) equally sized trials but including one small trial, (C) with half
large and half small trials, and (D) equally sized trials and one large trial. A large trial is 10 times the
size of a small trial, which means that the associated standard errors differ by approximately a factor
of 3.1 The number of trials k ranged from 2 to 10, that is, 𝑘 = 2, . . . , 10. The true level of heterogeneity
was set at 𝐼2 = 0.5; see (20). The average group size 𝑛𝑖 in each trial was set at around 100. Without
loss of generality, the true value of 𝜇 was set to zero. The 95% confidence interval (CI) of 𝜇 was
constructed using the proposed methods and compared to the HKSJ method3 and the modified HKSJ
(mKH) method for small k.1

The simulation for normally distributed outcomes under the model (3) involved several key steps,
as detailed in Appendix 2 of the work of IntHout et al.15 For each scenario with 𝐼2 = 0.5, the variance
𝜏2 was calculated using equations (20) and (21). For each trial 𝑖, the ‘true’ trial-specific effect size 𝜃𝑖
in (2) was drawn from a normal distribution with mean 𝜇 = 0 and variance 𝜏2. The trial outcomes were
then generated from a normal distribution with mean 𝜃𝑖 and variance 2𝜎2

𝑛𝑖
= 2/𝑛𝑖 (recall that the scaling

factor 𝜎 is chosen to be equal to one). Additionally, for each trial i with group size 𝑛𝑖 , the variance of
the trial outcome, i.e., the quantity 𝑠2

𝑖 , was generated based on a 𝜒2 distribution with 2𝑛𝑖 − 2 degrees
of freedom, divided by (𝑛𝑖 − 1)𝑛𝑖; see the work of IntHout et al.15 For each simulation, the generated
observed trial outcomes 𝒚𝑜 and within-trial variances 𝑠2

𝑖 for 𝑖 = 1, . . . , 𝑘, were used as input for the
proposed algorithms to construct 95% CIs of 𝜇. For the fiducial approach, 5,000 realizations of the
fiducial quantities were used to obtain the confidence limits. For asymptotic modifications I & II, 1000
bootstrap samples were used, i.e., 𝐵 = 1, 000.

To compare the proposed methods with the existing ones, the CIs of 𝜇 were also constructed using
the HKSJ method3 and the modified HKSJ (mKH) method.1 The DerSimonian–Laird (DL) estimator16

of the between-study variance 𝜏2 was used for both the HKSJ and mKH methods in the simulation.
According to Rover et al.1 and Sánchez-Meca and Marín-Martínez,17 the constructed CIs for both the
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Figure 1. Plots of the 95% CI coverage, median and 90th quantiles of the CI width ratios compared
to the HKSJ method for trials with half large/small sizes and average size around 100 (with a ceiling
(𝑘/2) of small sizes for kodd), by Asymptotic Modification I (Asym_I) method, Asymptotic Modification
II (Asym_II) method, Fiducial approach, HKSJ method, and modified HKSJ (mKH) method.

HKSJ and mKH methods are similar if using the DL estimator, the restricted maximum likelihood
(REML) estimator,18 and the Paule–Mandel (PM) estimator.12

A total of 5,000 meta-analyses were simulated, and all simulations were performed using R.19 In
order to compare the different approaches for computing the confidence intervals for 𝜇, the coverage
probabilities and the expected widths of the CIs were calculated, where the latter was expressed as a
ratio to the expected length of the interval obtained by the HKSJ method. The median of these ratios
and the 90th percentile of the ratios were also evaluated, as in the work of Rover et al.1

3.2. Simulation results

For trials with half large and half small sizes, with the average size around 100, the simulation results
are shown in Figure 1. The results include 95% CI coverage, median and 90th quantiles of the expected
CI length ratios mentioned above, for the number of trials 𝑘 = 2, . . . , 10. A large trial was 10 times the
size of a small trial, with the overall trial average being around 100, and the number of small-sized trials
was chosen to be (𝑘 + 1)/2 or 𝑘/2 depending on whether k is odd or even. For example, for 𝑘 = 3, the
group sizes for the trials would be 𝑛 = (25, 25, 250); for 𝑘 = 2, the group sizes would be 𝑛 = (18, 180).
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Figure 2. Plots of the 95% CI coverage, median and 90th quantiles of the CI width ratios compared to
the HKSJ method for trials with equal sizes of𝑛 = 100, by Asymptotic Modification I (Asym_I) method,
Asymptotic Modification II (Asym_II) method, Fiducial approach, HKSJ method, and modified HKSJ
(mKH) method.

The simulation results demonstrate that the proposed new methods, including the fiducial approach
and the small sample asymptotic methods, particularly Asymptotic Modification II, perform better
than the modified HKSJ (mKH) method when the number of trials is small. The HKSJ method
underperforms for small 𝑘 , and while its performance is indeed enhanced by the modified HKSJ (mKH)
method, the proposed new methods offer superior results. The fiducial approach consistently provides
more accurate confidence interval (CI) coverage. Asymptotic Modification II, in particular, shows more
accurate CI coverage and shorter CI lengths for small numbers of trials (𝑘 = 2, 3), compared to other
methods. Additionally, Asymptotic Modification I also offers a more accurate CI coverage when 𝑘 > 4.
The fiducial approach yields larger median CI lengths, but with less variability in CI lengths, especially
for 𝑘 = 2, 3. On the other hand, Asymptotic Modification I results in CI lengths similar to mKH but
with a larger median, and Asymptotic Modification II shows smaller CI lengths for 𝑘 = 2 and less
variability of CI lengths for 𝑘 = 3, 4.

Figure 2 displays the simulation results for trials with equal group sizes of 100. In this scenario, the
HKSJ method can handle small k effectively. It works very well when the analyzed studies are of equal
size (i.e., have equal standard errors), as shown in the work of Rover et al.1

Figures 3 and 4 show the corresponding simulation results for the scenarios with one large trial, and
with one small trial, respectively, with an average group size around 100. The results and conclusions

https://doi.org/10.1017/rsm.2025.10022 Published online by Cambridge University Press

https://doi.org/10.1017/rsm.2025.10022


Research Synthesis Methods 11

Figure 3. Plots of the 95% CI coverage, median and 90th quantiles of the CI width ratios compared to
the HKSJ method for the case of equally-sized trials with one large trial and average size around 100,
by Asymptotic Modification I (Asym_I) method, Asymptotic Modification II (Asym_II) method, Fiducial
approach, HKSJ method, and modified HKSJ (mKH) method.

are similar as in the case of trials with half-large and half-small sizes. The HKSJ method underperforms
for small 𝑘 , while the mKH method improves its performance. The fiducial approach consistently
provides more accurate CI coverage close to the nominal 95%. Asymptotic Modification II maintains
more accurate CI coverage, outperforming the mKH method for small numbers of trials. For the CI
lengths, the results reveal that the fiducial approach yields larger median CI lengths with less variability,
while Asymptotic Modification II shows smaller and more stable CI lengths for small 𝑘 , indicating its
robustness.

In summary, for computing a CI of 𝜇 in unbalanced settings with a small number of studies k,
Asymptotic Modification I shows results comparable to those based on existing methods. However, the
fiducial approach and Asymptotic Modification II show better results, with more accurate CI coverages
and shorter CI lengths. The findings highlight the superior performance of the newly proposed methods
in terms of both CI coverage and length, making them excellent choices for practical applications.

4. Examples

An alternative methodology, not focused on in our work, is a Bayesian approach (see the works of
Bender et al.,20 and Friede et al.,21) which introduces stability through the incorporation of prior
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Figure 4. Plots of the 95% CI coverage, median and 90th quantiles of the CI width ratios compared to
the HKSJ method for the case of equally-sized trials with one small trial and average size around 100,
by Asymptotic Modification I (Asym_I) method, Asymptotic Modification II (Asym_II) method, Fiducial
approach, HKSJ method, and modified HKSJ (mKH) method.

knowledge about the heterogeneity parameter 𝜏2 through (weakly) informative prior distributions. The
two examples of few studies illustrated in the work of Bender et al.20 are used here to demonstrate the
performance of the proposed methods. These examples come from dossier assessments conducted by
the Institute for Quality and Efficiency in Health Care.20 Assuming that the logarithm of hazard ratios
(HR) or relative risks (RR) follows a normal distribution, 95% confidence intervals for the data in both
examples were generated using the HKSJ method, the modified HKSJ (mKH) method, the Bayesian
approach, and the proposed methods, including the Fiducial approach and Asymptotic Modification I
and II. For Bayesian approaches, half-normal priors for the heterogeneity parameter 𝜏 with scales of
0.5 (Bayesian-HN(0.5)) and 1.0 (Bayesian-HN(1)) were applied.

In the first example, the added benefit of belatacept compared to ciclosporin A in combination
with corticosteroids and mycophenolate mofetil was assessed as the appropriate comparator therapy
for the prophylaxis of graft rejection in adults receiving a renal transplant.20 Only 𝑘 = 2 studies were
available. The results for this example are illustrated in Figure 5. The HKSJ method yielded a wide
95% CI due to insufficient data to reliably estimate heterogeneity, leading to a conservative result.
The mKH method produced the same result as HKSJ in this case. The Bayesian approach provides
an alternative, yielding narrower intervals than HKSJ and mKH. However, prespecification of the
prior distribution for between-study variation 𝜏2 is crucial to interpreting the intervals in a frequentist
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Figure 5. A forest plot showing random-effects meta-analysis results for the first belatacept example,
by HKSJ method, modified HKSJ (mKH) method, Bayesian method using half-normal priors for𝜏with
scales 0.5 (Bayesian-HN(0.5)) and 1 (Bayesian-HN(1)), Fiducial approach, and Asymptotic Modifica-
tion I (Asym_I) and II (Asym_II) methods.

Figure 6. A forest plot showing random-effects meta-analysis results for the second sipuleucel-T
example, by HKSJ method, modified HKSJ (mKH) method, Bayesian method using half-normal priors
for𝜏with scales 0.5 (Bayesian-HN(0.5)) and 1 (Bayesian-HN(1)), Fiducial approach, and Asymptotic
Modification I (Asym_I) and II (Asym_II) methods.

sense, as a hypothesis test.20 The application of a half-normal prior with scale 0.5 for 𝜏 results in
a statistically significant pooled effect estimate, while a scale of 1 does not. Among the proposed
methods, Asymptotic Modifications I and II generate similar but slightly shorter confidence intervals
compared to the Bayesian method with a half-normal prior of scale 1. The Fiducial approach provides
slightly wider intervals than the asymptotic modification methods but remains narrower than those from
HKSJ and mKH.

In the second example, the added benefit of sipuleucel-T compared to the appropriate comparator
therapy to treat asymptomatic or minimally symptomatic metastatic (non-visceral) castrate-resistant
prostate cancer was assessed in male adults for whom chemotherapy is not yet clinically indicated.20

Here, 𝑘 = 3 relevant studies were available. The results for this example are shown in Figure 6.
Bayesian approaches yield shorter confidence intervals, indicating a statistically significant difference
between treatment groups, to the disadvantage of sipuleucel-T. The mKH method produces the same
wide confidence interval as HKSJ, including the relative risk of 1. The three proposed methods generate
wider confidence intervals, particularly on the right-hand side, covering the finding from the second
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study with a large upper confidence limit for the relative risk, which may suggest better coverage of the
true value. Although Bayesian approaches tended to give qualitatively different results relative to the
other methods, the choice of method generally had negligible impact on the conclusions drawn in this
example.

5. Discussion

In this work, we have proposed two novel methods for computing confidence limits for 𝜇 in random-
effects meta-analysis, particularly suited for a small number of studies. One method is based on
fiducial inference, while the other involves two small sample asymptotic procedures, referred to as
Asymptotic Modifications I and II. Our simulation studies indicate that for unbalanced settings, when
the number of studies k is small, the proposed methods show significant improvements compared to
existing methods. The fiducial approach and Asymptotic Modification II exhibit superior performance,
providing more accurate CI coverages and shorter CI lengths compared to those based on the modified
HKSJ method proposed by Rover et al.1 Also, Asymptotic Modification I provides results that are
comparable to those based on the modified HKSJ method. We believe that these findings have
important practical implications since meta-analyses with a small number of studies are frequently
encountered in applications. It is noted that for 𝑘 = 2, none of the competing approaches yields
useful information, so the differences in relative performance of the approaches do not have practical
relevance.

For methods based on small sample asymptotics, other modifications of the statistic 𝑟 (𝜓) given in
(18) are also available in the literature, with the goal of achieving improved small sample performance;
see the work of Brazzale et al.13 Such modifications have in fact been applied in the context of the model
and problem investigated in our work; see the work of Guolo.22 Figures 1-3 in the work of Guolo22

show that such modifications exhibit a performance quite similar to what we have noted for Asymptotic
Modifications I and II considered in our investigation. We also want to point out that in the context
of inter-laboratory studies where the model (3) is assumed, but with unknown within-trial variances,
the fiducial approach was developed in the work of Tian23 and small sample asymptotic procedures
were investigated by Sharma and Mathew.24 Furthermore, Zejnullahi and Hedges 25 introduced two
alternative robust variance estimators were introduced by Zejnullahi and Hedges25 for small meta-
analyses, evaluating degrees-of-freedom adjustments for confidence intervals.

In addition to the methodological contributions, we are developing an R package that will offer a
practical tool for the easy implementation of the proposed methods.

Future research could explore the impact of estimated within-trial variability on the performance
of the CIs of 𝜇. Furthermore, the median or mean of the fiducial quantities could be used as a point
estimate of 𝜇. The performance of such a point estimate of 𝜇 could be evaluated and compared with
the maximum likelihood estimate (MLE), the restricted MLE (REML), and the estimate resulting from
the DerSimonian–Laird (DL) approach. These are currently under investigation.
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